AFOSR: Verification and Validation of Autonomous Systems with Hybrid Dynamics under Uncertainty
In conventional design processes, the design of the plant, the controller, the prototype as well as the certification of validity are products of consecutive phases of development utilizing distinct simulation, fabrication, and synthesis tools. Each phase produces an “optimal” solution, which is typically not jointly optimal for all phases. Phases need to be restarted from scratch if a new edge case or catastrophic failure is discovered at a later stage, and the interaction between failures, fabrication tolerances, and model inaccuracy is murky at best. Instead, we propose to combine rapid prototyping, hybrid systems techniques for modeling and control, formal verification, and quantified uncertainty and risk models for systematic autonomous system development. New advanced systems have raced ahead of our ability to analyze them, while advanced manufacturing technologies allow us to quickly and inexpensively build them. The paradigm we propose rapidly prototypes the design, validates its fabrication, and quantifies both its performance and its failure risk by conducting physical tests of the prototypes. This allows the new paradigm to rationally improve this combined representation without being subject to reality-gaps in simulation, and without requiring catastrophic restarts when new edge cases and failure modes are discovered.