Easy, Hard or Convex? The Role of Sparsity and Structure in Systems Theory

Easy, Hard or Convex? The Role of Sparsity and Structure in Systems Theory

Speaker Name: 
Mario Sznaier
Speaker Title: 
Dennis Picard Trustee Professor
Speaker Organization: 
Northeastern University College of Engineering
Start Time: 
Friday, February 15, 2019 - 1:30pm
End Time: 
Friday, February 15, 2019 - 3:00pm
Location: 
E2 506
Organizer: 
Ricardo Sanfelice

 

Abstract:

Arguably, one of the hardest challenges faced now by the systems community stems from the exponential explosion in the availability of data, fueled by recent advances in sensing and actuation capabilities. Simply stated, classical techniques are ill equipped to handle very large volumes of (heterogeneous) data, due to poor scaling properties, and to impose the structural constraints required to implement ubiquitous sensing and control.  For example, the powerful Linear Matrix Inequality framework developed in the past 20 years and associated semidefinite program based methods have proven very successful in providing global solutions to many control and identification problems. However, in may cases these methods break down when considering problems involving just a few hundred data points. On the other hand, several in-principle non-convex problems (e.g identification of classes of switched systems) can be efficiently solved in cases involving large amounts of data. Thus the traditional convex/non-convex dichotomy may fail to capture the intrinsic difficulty of some problems.  

Bio:

Mario Sznaier is currently the Dennis Picard Chaired Professor at the Electrical and Computer Engineering Department, Northeastern University, Boston. Prior to joining Northeastern University, Dr. Sznaier was a Professor of Electrical Engineering at the Pennsylvania State University and also held visiting positions at the California Institute of Technology. His research interest include robust identification and control of hybrid systems, robust optimization, and dynamical vision. Dr. Sznaier is currently serving as an associate editor for the journal Automatica and as chair of the IFAC Technical Committee on Robust Control. Past recent service include Program Chair of the 2017 IEEE Conf. on Decision and Control, General Chair of the 2016 IEEE Multi Systems Conference, Chair of the  IEEE Control Systems Society Technical Committee on Computational Aspects of Control Systems Design (2013-2017), Executive Director of the IEEE CSS (2007-2011) and member of the Board of Governors of the CSS (2006-2014). He is a distinguished member of the IEEE Control Systems Society and a Fellow of the IEEE for his contributions to robust control, identification and dynamic vision. A list of publications and current research projects can be found at http://robustsystems.coe.neu.edu. 

 

spacer