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Modern Control Theory
Modern Control Theory dates back to first International
Federation for Automatic Control (IFAC) World Congress that
took place in Moscow in 1960.

At least three major theoretical accomplishments were reported
there.

• Pontryagin, Bolshanski, Gamkerlidze and Mischenko
presented the Maximum Principle.

• Bellman presented the Dynamic Programming Method and
the Hamilton-Jacobi-Bellman (HJB) PDE.

• Kalman presented the theory of Controllability, Observability
and Minimality for Linear Control Systems.

What did these accomplishments have in common.

They dealt with control and estimation problems in

State Space Form.
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Linear State Space Control Theory

The decade of the 1960 witnessed the explosion of linear state
space control theory.

• Linear Quadratic Regulator (LQR)

• Kalman Filtering

• Separation Principle, Linear Quadratic Gaussian (LQG)

• Many other linear results.

It was the time of F,G,H, J if you lived near Stanford and
A,B,C,D if you lived anywhere else.

And there was much lamenting the gap between the linear state
space theory and the linear frequency domain practice.
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LINPACK

In the early 1970s something happened to change the
conversation.

The Department of Energy funded a project to develop software
for linear algebra applications for what were then called
supercomputers.

Four numerical analysts, Dongarra, Bunch, Moler and Stewart
wrote LINPACK in Fortran. LINPACK makes use of the BLAS
(Basic Linear Algebra Subprograms) libraries for performing
basic vector and matrix operations.

In the later 1970s LINPAK and a related package called EISPAK
were replaced and supplanted by LAPACK which also uses
BLAS.
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MATLAB

Cleve Moler, the chairman of the computer science department
at the University of New Mexico, started developing MATLAB
in the late 1970s.

He designed it to give his students access to LINPACK and
EISPACK without them having to learn Fortran.

Jack Little, an engineer, was exposed to it during a visit Moler
made to Stanford University in 1983.

Recognizing its commercial potential, he joined with Moler and
Steve Bangert. They rewrote MATLAB in C and founded
MathWorks in 1984 to continue its development.

MATLAB was first adopted by researchers and practitioners in
control engineering, Little’s specialty, but quickly spread to
many other domains.
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Competitors

With BLAS readily available, several other companies arose to
compete with MathWorks, among them Control-C and
Matrix-X. But they gradually faded away.

There continues to arise new competitors to Matlab like Scilab
but with Matlab’s extensive suite of toolboxes it is hard for
them to get market share.

Alan Laub and others wrote the Control Systems Toolbox and
Leonard Ljung wrote the System Identification Toolbox. Both
deal primarily with linear systems.

Other Controls related toolboxes include the Aerospace Toolbox,
the Model Predictive Control Toolbox, the Robotics Toolbox
and the Robust Control Toolbox.

So special purpose software is becoming available for some
nonlinear systems.
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Nonlinear Systems Toolbox 2016
The Control Systems Toolbox for linear systems is

• General Purpose

• Reliable
• Scalable
• Portable
• Easy to Use
• Benchmarked

Can we develop a toolbox with similar properties that is
applicable to a broad class of nonlinear systems?

In the rest of this talk I would to present a few baby steps in
this direction, which can be found in NST 2016.

It should be noted that the numerical optimization community
has already developed software with these properties for a wide
variety of applications like Mixed Intger Linear Programs (i.e.,
GUROBI and CPLEX) and Nonlinear Programs (i.e., KNITRO
and IPOPT). For optimzation solver benchmarks see
http://plato.la.asu.edu/bench.html
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Smooth Nonlinear Systems

A smooth nonlinear system is of the form

ẋ = f(x, u)

y = h(x, u)

with state x ∈ IRn×1 , input u ∈ IRm×1 and output y ∈ IRp×1

By smooth we mean that f(x, u), h(x, u) have as many
continuous derivatives as needed by problem and its solution.

Later we shall relax this to piecewise smooth.

There may be state and control constraints of the form

g(x, u) ≤ 0

Any problem with other than linear equality constraints is
inherently nonlinear even if f(x, u), h(x, u) are linear in x, u .
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ẋ = f(x, u)

y = h(x, u)

with state x ∈ IRn×1 , input u ∈ IRm×1 and output y ∈ IRp×1

By smooth we mean that f(x, u), h(x, u) have as many
continuous derivatives as needed by problem and its solution.

Later we shall relax this to piecewise smooth.

There may be state and control constraints of the form

g(x, u) ≤ 0

Any problem with other than linear equality constraints is
inherently nonlinear even if f(x, u), h(x, u) are linear in x, u .



Smooth Nonlinear Systems

A smooth nonlinear system is of the form
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Fundamental Problems

What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Estimating the state of a system from partial and inexact
measurements.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Your favorite problem.



Fundamental Problems

What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Estimating the state of a system from partial and inexact
measurements.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Your favorite problem.



Fundamental Problems

What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Estimating the state of a system from partial and inexact
measurements.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Your favorite problem.



Fundamental Problems

What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Estimating the state of a system from partial and inexact
measurements.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Your favorite problem.



Fundamental Problems

What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Estimating the state of a system from partial and inexact
measurements.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Your favorite problem.



Fundamental Problems

What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Estimating the state of a system from partial and inexact
measurements.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Your favorite problem.



Linear Solutions

These are fundamental problems for both linear and nonlinear
systems. For linear systems we have theoretical solutions that
are easily implemented numerically. Here is a few.

• The Linear Quadratic Regulator (LQR) can be used for
optimally stabilizing a linear plant.

• Linear controllability and the Controllability Gramian lead to
an optimal transfer from one state to another.

• The Kalman Filter yields an optimal estimate.

• The Francis theory of regulation can be used to optimally
track a reference signal.

Notice the repeated use of the word ”optimal”.

It can be difficult to solve a problem that has many solutions.
Introducing an optimality criterion narrows the search.
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Optimal Stabilization
An operating point (equilibrium point) is a pair xe, ue such that
f(xe, ue) = 0.

Without loss of generalitity we can assume xe = 0, ue = 0.

A classic way to find a feedback u = κ(x) that stabilizes a
nonlinear system to an operating point is to pose and solve an
infinite horizon optimal control problem. Choose a Lagrangian
l(x, u) that is nonnegative definite in x, u and positve definite
in u and

min
u(·)

∫ ∞
0

l(x, u) dt

subject to

ẋ = f(x, u)

x(0) = x0
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Optimal Stabilization
The reason is the optimal solution is given by a feedback
u(t) = κ(x(t)) and the optimal cost π(x0) ≥ 0 starting at x0 is
a potential Lyapunov function for the closed loop system

d

dt
π(x(t)) = −l(x(t), κ(x(t))) ≤ 0

that can be used to verify stability.

If we only have approximations π(x), κ(x) to the true solutions
then we can verify local asymptotic stability on the largest
sublevel set on which the standard Lyapunov equations hold.

If x 6= 0 and π(x) ≤ c

0 < π(x)

0 >
∂π

∂x
(x)f(x, κ(x))
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HJB Equations

If there exist smooth solutions π(x), κ(x) to the
Hamilton-Jacobi-Bellman equations

0 = minu

{
∂π

∂x
(x)f(x, u) + l(x, u)

}
κ(x) = argminu

{
∂π

∂x
(x)f(x, u) + l(x, u)

}
then these are the optimal cost and optimal feedback.

The control Hamiltonian is

H(λ, x, u) = λ′f(x, u) + l(x, u)
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HJB Equations

If the control Hamiltonian is strictly convex in u for every λ, x
then the HJB equations simplify to

0 =
∂π

∂x
(x)f(x, κ(x)) + l(x, κ(x))

0 =
∂π

∂x
(x)

∂f

∂u
(x, κ(x)) +

∂l

∂u
(x, κ(x))

If R(x) > 0 and

f(x, u) = f0(x) + f1(x)u

l(x, u) = q(x) +
1

2
u′R(x)u

then H(λ, x, u) is strictly convex in u for every λ, x.
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Linear Quadratic Regulator

About the only time the HJB equations can be solved in closed
form is the so-called Linear Quadratic Regulator (LQR)

min
u(·)

1

2

∫ ∞
0

x′Qx+ 2x′Su+ u′Ru dt

subject to

ẋ = Fx+Gu

The optimal cost is π(x) = 1
2
x′Px and optimal feedback is

u = Kx where P,K satisfy

0 = F ′P + PF +Q− (PG+ S)R−1(PG+ S)′

K = −R−1(PG+ S)′
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Jacobian Linearization

Standard engineering practice is to approximate the nonlinear
dynamics

ẋ = f(x, u)

by its Jacobian linearization

ẋ = Fx+Gu

where

F =
∂f

∂x
(0, 0), G =

∂f

∂u
(0, 0)

Then 1
2
x′Px and u = Kx are approximations to the true

optimal cost π(x) and optimal feedback u = κ(x).
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Lyapunov Argument

If

f(x, u) = Fx+Gu+ O(x, u)2

then

d

dt

(
x′(t)Px(t)

)
= −x′(t)

(
Q+ (PG+ S)R−1(PG+ S)′

)
x(t)

+O(x(t))3

so on some neighborhood of x = 0 the feedback u = Kx
stabilizes the nonlinear system.

Kicker: How big is the neighborhood?
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Al’brekht’s Method

In 1961 Ernst Al’brekht noticed that first HJB equation

0 =
∂π

∂x
(x)f(x, κ(x)) + l(x, κ(x))

is singular at the operating point x = 0, u = 0 because
f(0, 0) = 0.

This means that it is amenable to power series methods. Let
π[k](x) denote a homogeneous polynomial of degree k and
consider the linear operator

π[k](x) 7→
∂π[k]

∂x
(x)(F +GK)x

The eigenvalues of this operator are the sums of k eigenvalues
of F +GK so if the latter are all in the open left half plane
than so are the former.



Al’brekht’s Method

In 1961 Ernst Al’brekht noticed that first HJB equation

0 =
∂π

∂x
(x)f(x, κ(x)) + l(x, κ(x))

is singular at the operating point x = 0, u = 0 because
f(0, 0) = 0.

This means that it is amenable to power series methods. Let
π[k](x) denote a homogeneous polynomial of degree k and
consider the linear operator

π[k](x) 7→
∂π[k]

∂x
(x)(F +GK)x

The eigenvalues of this operator are the sums of k eigenvalues
of F +GK so if the latter are all in the open left half plane
than so are the former.



Al’brekht’s Method

In 1961 Ernst Al’brekht noticed that first HJB equation

0 =
∂π

∂x
(x)f(x, κ(x)) + l(x, κ(x))

is singular at the operating point x = 0, u = 0 because
f(0, 0) = 0.

This means that it is amenable to power series methods. Let
π[k](x) denote a homogeneous polynomial of degree k and
consider the linear operator

π[k](x) 7→
∂π[k]

∂x
(x)(F +GK)x

The eigenvalues of this operator are the sums of k eigenvalues
of F +GK so if the latter are all in the open left half plane
than so are the former.



Al’brekht’s Method

Al’brekht plugged the Taylor polynomial expansions

f(x, u) ≈ Fx+Gu+ f [2](x, u) + . . .+ f [d](x, u)

l(x, u) ≈
1

2

(
x′Qx+ 2x′Su+ u′Ru

)
+ . . .+ l[d+1](x, u)

π(x) ≈
1

2
x′Px+ π[3](x) + . . .+ π[d+1](x)

κ(x) ≈ Kx+ κ[2](x) + . . .+ κ[d](x, u)

into the HJB equations and collected terms of like degrees.



Al’brekht’s Method

At the lowest level he obtained the familiar LQR equations

0 = F ′P + PF +Q− (PG+ S)R−1(PG+ S)′

K = −R−1(PG+ S)′

At the next level he obtained linear equations for the coefficients
of π[3](x) and κ[2](x).

These linear equations are solvable if the standard LQR
conditions hold.

There are similar linear equations for the higher degree terms,
π[k+1](x) and κ[k](x).
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NST 2016

The routine hjb.m in my Nonlinear Systems Toolbox can
implement Al’brekht’s method in any state and control
dimensions to any degree subject to machine limitations.

The routine hjb set up.m converts symbolic expressions for
f(x, u) and l(x, u) into the matrices of coefficients that hjb.m

needs.

Here is an example.
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Optimal Stabilization of a Rigid Body

The example was fairly simple with n = 4 states and m = 2 .

What about a more challenging problem?

Consider rigid body with six degrees of freedom, a boat, a plane
a satellite. There are three translational degrees of freedom and
three angular degrees of freedom.

A state space model has n = 12 dimensions with associated
velocities.

Suppose the body is fully actuated, then the control dimension
is m = 6.

Our goal is to optimally stabilize the body to a desired constant
velocity and desired attitude.
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Runtimes

First we did it to degree 4 in the cost and degree 3 in the
feedback.

hjb set up time = 89.7025 seconds

Solving the HJB equations of degree 1
Solving the HJB equations of degree 2
Solving the HJB equations of degree 3

hjb time 3 = 4.0260 seconds
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Runtimes
Next we did it to degree 6 in the cost and degree 4 in the
feedback.

Unfortunately Matlab’s symbolic differentiation routine was not
up to the task of computing Taylor polynomials of degree 5, 6.

So hjb set up.m did not run.

By padding f and l with random coefficients we can test hjb.m

Solving the HJB equations of degree 1
Solving the HJB equations of degree 2
Solving the HJB equations of degree 3
Solving the HJB equations of degree 4
Solving the HJB equations of degree 5

hjb time 5 = 1.6048e+ 03

This is 26.7466 minutes. The number of monomials of degrees
one through five in n+m = 18 variables is 33648.
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Kicker

So using Al’brekht’s method we can get a local solution to the
HJB equations for smooth medium sized systems without
constraints.

To my knowledge there is no other method that can do this.

But

• How big is the neighborhood of stabilization?

• What if there are constraints?

• What if there are discontinuities?
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Model Predictive Control
A variation on Model Predictive Control (MPC) is an answer to
the first question.

In MPC we don’t try to solve off-line for the optimal cost π(x)
and optimal feedback κ(x) to an infinite horizon optimal control
problem.

Instead we solve on-line a discrete time finite horizon optimal
control problem for our current state. Suppose t = t0 and
x(t0) = x0 , we choose a horizon length T and a Lagrangian
L(x, u) and seek to find the optimal control sequence
u∗t0 = (u∗(t0), . . . , u∗(t0 + T − 1)) that minimizes

t0+T−1∑
t=t0

L(x(t), u(t)) + Π(x(t0 + T ))

x(t+ 1) = F (x(t), u(t))
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Model Predictive Control

There is a discrete time version of Al’brekht for the corresonding
infinite horizon optimal control problem implemented in dpe.m

that yields Taylor polynomials for the infinite time optimal cost
Π(x) and optimal feedback K(x).

We use Π(x) as our terminal cost for the discrete time finite
horizon optimal control problem for then the finite horizon and
infinite horizon costs are the same.

The discrete time finite horizon optimal control problem is a
nonlinear program which we pass to a fast solver like KNITRO
or IPOPT. The solver returns u∗t0 , we implement the feedback
u(t0) = u∗(t0) and move one time step. We increment t0 by
one which slides the horizon forward one time step and repeat
the process.
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Adaptive Horizon Model Predictive Control

But how do we know that the horizon T is long enough so that
the endpoint x(t0 + T ) is in the domain where Π(x) is a valid
Lyapunov function for closed loop dynamics under the feedback
u = K(x)?

We compute the extension the state trajectory from x(t0 + T )
an additional S times steps using the closed loop dynamics
under the feedback u = K(x).

As we do so we check that the Lyapunov conditions hold on the
extension. If so we infer that we are stabilizing.

If they are comfortably satisfied we might decrease the horizon.

If the are not satisfied we increase the horizon.
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Adaptive Horizon Model Predictive Control

If there are constraints G(x, u) ≤ 0 we can take the same
approach as long as they are not active at the operating point
G(0, 0) < 0.

We pass these constraints to the solver which hopefully can
handle them.

And we check that the constraints and the Lyapunov conditions
are satisfied on the computed extension.
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Examples

We seek to stabilize a double pendulum to the upright position
using torques at each of the pivots.

x1 is the angle of the first leg measured in radians
counter-clockwise from straight up and x3 = ẋ1.
x2 is the angle of the second leg measured in radians
counter-clockwise from straight up and x4 = ẋ2.
u1 is the torque applied at the base of the first leg.
u2 is the torque applied at the joint between the legs.
The length of the first massless leg is 1 m.
The length of the second massless leg is 2 m.
The mass at the joint between the legs is 2 kg.
The mass at the tip of the second leg is 1 kg.
The damping coefficients at the two joints are both 0.5 s−1 .

The continuous time dynamics is discretized using Euler’s
method with time step 0.1 s. assuming the control is constant
throughout the time step.
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Examples

The continuous time Lagrangian is lc(x, u) = (|x|2 + |u|2)/2.

Its Euler discretization is l(x, u) = (|x|2 + |u|2)/20.

The initial state is x = (π/2,−π/2, 0, 0)′.

The initial horizon length is N = 5.

The terminal cost and feedback Vf(x), κf(x) are the solution
of the discrete time, infinite horizon LQR problem using the
linear part of the dynamics at the origin and the quadratic
Lagrangian.

The class K∞ function is α(|x|) = 0.1|x|2.
The extended horizon is kept frozen at L = 5.

We do not move one time step forward if the feasibility and
Lyapunov conditions do not hold over the extended state
trajectory but instead we increased N by 1 and recomputed
from the same x.
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