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The Nonlinear Systems Toolbox is a suite of Matlab routines for
the control and estimation of nonlinear systems.

We will discuss two of them for Optimal Stabilization and Op-
timal Regulation



Example of Optimal Stabilization
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This 1s an example of how to optimally
stabilize a system to an operating point
using Al’brekht’s method to solve a smooth
infinite horizon optimal control problem.
E. G. Al’brekht, On the Optimal
Stabilization of Nonlinear Systems, J.
Appl. Math. Mech., v. 25, pp. 1254-1266, 1961.
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This script can be used as a template to
optimally stabilize any smooth nonlinear
system. Smooth means that the system

can be described using elementary functions
that MATLAB can symbolically differentiate.

This example is to stabilize to the upright
position a double pendulum using torques
at each of the pivots.

Although it 1is not needed in this example
in general it is essential to scale the
state and control variables by dividing
each variable by 1its charcteristic value
so that each variable varies plus/minus
one unit from its equilibrium value.
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The code starts by computing the Taylor
polynomial of the dynamics of degrees

one through D and the Taylor polynomial

of the Lagrangian of degrees two through D+1
at an operating point. It is essential

that the linear part of the dynamics and
the quadratic part of the Lagrangian
constitute a nice LQR problem.
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Then the code computes the Taylor polynomial

of the optimal cost PY through degree two to D+1
and the Taylor polynomial of the optimal

feedback KA to degree D at the operating

point. These are 1n scaled displacement coordinates
around the operating point. Then the code

simulates the close loop response from some

initial state.
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Increasing the degree D generally leads to

a more accurate approximation to the true
optimal cost and optimal feedback near the
operating point. But 1t does not necessarily
lead to a larger domain on which the computed
PY 1s a valid Lyapunov function for the dynamics
using the computed feedback KA but generally
using D=3 1s better than D=1.

The code puts no limit on the degree D nor
the dimensions N and M of the state and
control but time and storage limitations
might effectively do so.



clear

% Define system

n=4; Y state dimension

m=2; % control dimension

d=3; % degree of optimal feedback

x=sym(’x’,[n,1]); 7 state variables, thetal,theta2, tl
u=sym(’u’, [m,1]); % control variables, torque at fir:

11=1; % length of first massless link

12=2; % length of second massless link

ml=2; 7 mass at end of first link

m2=1; % mass at end of second link

b1=0.5; % damping coefficient at first joint
b2=0.5; 7% damping coefficient at second joint
g=9.8; ' gravitational constant

x0=[pi;pi;0;0]; % equilibrium state, at rest straigh
u0=[0;0]; % equilibrium control

xscale=ones(n,1); 7 state variable charcteristic lengt
uscale=ones(m,1); % control variable charcteristic ler



% inertia matrix

M=[m1%11"2+m2%12"2 m2*11%x12%cos(x(1,1)-x(2,1));.....
m2*x11*x12%cos(x(1,1)-x(2,1)), m2x12"2];

% coriolis and centripetal matrix
C=reshape(jacobian(reshape(M,4,1) ,x(1:2,1))*x(3:4,1),:
% kinetic energy

T=x(3:4,1) .’*M*x(3:4,1)/2;

% potential energy
V=g*(m1*11*x(1-cos(x(1,1)))+m2*%(11*x(1-cos(x(1,1)))+12x*
% Lagrangian

L=T-V;



% dynamics

fsym12=x(3:4,1); 7 kinematics

fsym34=inv (M) *(jacobian(L,x(1:2,1)).°-C*x(3:4,1).....
+u-[b1*x(3,1) ;2% (x(4,1)-x(3,1))1);

fsym=[fsym12;fsym34]; 7 dynamics

% The linear part of the dynamics at
%» the equilibrium of the must be stabilizable.
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/» We choose a control Lagrangian starting with quadra
%» The quadartic part of the Lagrangian and the linear
% of the dynamics must satisfy the standard LQR condi

lsym=( (x(1,1)-x0(1,1)) " 2+(x(2,1)-x0(2,1))"2....
+u(1,1)"2+u(2,1)°2)/2;

%» If there are state and/or control constraints then j
%» terms can be added to the Lagarngian to try to enfo:
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% We call hjb_set_up.m to convert the symbolic FSYM ar
% matrices F and L of coefficients of their Taylor po.
% at x0, uo0.

tic

[f,1]1=hjb_set_up(fsym,lsym,x,u,x0,ul,.....
xscale,uscale,n,m,d);

set_up_time=toc

12



% We call hjb.m to find the Taylor polynomial PY of tl
% to degree D+1 and the Taylor polynomial KA of the oj
% to degree D. The routine also returns FK and LK, the
%» and the closed loop Lagarngian.

tic

[ka,fk,py,lk]= hjb(f,1,n,m,d);

comp_time=toc

%» Note: hjb.m runs much faster the second time.
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% We verify that PY and KA approximately satisfy the
%» first HJB equation. The rseidue of this equation

%» is a polynomial of degrees 2 through D+1 and HJB_ERI
% is the 2 norm of its coefficients.

hjb_err=norm(dd(py, [1,n],[2,d+1],fk, [n,n], [1,d], [2,d+:
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% Create anonymous functions of PY and KA.
%» Their argument XX is in the original coordinates.

py_fn=0@(xx) py*mon((xx-x0)./xscale,n,[2,d+1]);
ka_fn=0(xx) ka*mon((xx-x0)./xscale,n,[1,d]);
%» Create an anonymous matlabFunction of FSYM.

ff=matlabFunction(fsym,’file’,’’,’vars’,{x,ul});

%» Create an anonymous function
% that ode45.m can integrate
xdot=0(t,xx)ff(xx,ka_fn(xx));
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% Define a random initial state.
x1=0.5*randn(n,1)+x0

%» Integrate the closed loop plant f
% rom this initial condition.
[tout,xxout]=oded5(xdot, [0,10],x1);

%» Plot the trjectories of two angles

plot(tout,xxout(:,1),’.b’,tout,xxout(:,2),’-r’)
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set_up_time =
3.0611
Solving the HJB equations of degree 1
Solving the HJB equations of degree 2
Solving the HJB equations of degree 3
comp_time =
0.0544
hjb_err =
4.2107e-10
xl =
3.3010
2.4877

-0.2168
0.1713
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